宇航计测技术 ›› 2025, Vol. 45 ›› Issue (2): 49-62.doi: 10.12060/j.issn.1000-7202.2025.02.03

• • 上一篇    下一篇

光学神经网络研究进展

冯佳楠1,胡建阳1,张修建2,林杰1,*,金鹏1,*   

  1. 1.哈尔滨工业大学微系统与微结构制造 教育部重点实验室,哈尔滨 150001;
    2.北京航天计量测试技术研究所 人工智能计量测试与标准重点实验室,北京 100076
  • 出版日期:2025-04-15 发布日期:2025-04-29
  • 通讯作者: 林杰(1979-),男,教授,博士,主要研究方向:微纳光学、信息光学;金鹏(1972-),男,教授,博士,主要研究方向:微纳器件制备与应用。
  • 作者简介:冯佳楠(1996-),男,在读博士研究生,主要研究方向:光学衍射神经网络设计与器件制备。
  • 基金资助:
    国家自然科学基金(U2341245,62175050)

Research Progress of Optical Neural Networks

FENG Jianan1,HU Jianyang1,ZHANG Xiujian2,LIN Jie1,*,JIN Peng1,*   

  1. 1.Key Laboratory of Micro-systems and Micro-structures Manufacturing,Ministry of Education,Harbin Institute of Technology,Harbin 150001,China;

    2.Key Laboratory of Artificial Intelligence Measurement and Standards,Beijing Aerospace Institute for Metrology and Measurement Technology,Beijing 100076,China

  • Online:2025-04-15 Published:2025-04-29

摘要: 近年来,以深度学习为代表的人工智能技术快速发展,人工智能深度赋能传统行业,引领实现新一轮产业技术革命。然而,电子芯片晶体管的尺寸正逐步接近物理极限,导致传统电子神经网络无法满足指数增长的算力需求。受益于光子的独特优势,光计算技术将光电子技术与神经网络模型相结合,具有并行化、高速度、低功耗、多维度处理优势。文章对光学神经网络研究过程进行了梳理,重点对光学衍射神经网络的计算架构进行了分析讨论,最后总结了大规模光学衍射神经网络实用化面临的挑战,并对未来发展趋势进行了展望。

关键词: 光学信息处理, 光计算, 光学神经网络

Abstract: Recently,artificial intelligence,particularly deep learning,has developed rapidly,which deeply empowers traditional industries and leads the realization of a new round of industrial technology revolution.However,the size of transistors on electronic chips is gradually approaching the physical limit,resulting in the inability of traditional electronic neural networks to meet the exponential increasing demand for computing power.Benefiting from the unique advantages of photon,optical computing technology merges optoelectronic technology with neural network models,which has the advantages of parallelization,high speed,low power consumption and multi-dimensional processing.The research progress of optical neural networks is reviewed,concentrating on the computational architecture of optical diffractive neural networks.The challenges facing the practical implementation of large-scale optical diffractive neural networks are analysed and summarized,and the future development trend is prospected.

Key words: Optical information processing, Optical computing, Optical neural network

中图分类号: