宇航计测技术 ›› 2025, Vol. 45 ›› Issue (1): 13-19.doi: 10.12060/j.issn.1000-7202.2025.01.03

• 理论与前沿技术 • 上一篇    下一篇

深度学习在化学计量检测中的应用

马在强1,侯学军1,张江浩1,张昕1,翟丛丛1,赵燕2,赵晓刚1,*,刘霞1   

  1. 1.中国兵器工业集团第五三研究所,济南 250031;2.淄博市计量技术研究院,淄博 255000
  • 出版日期:2025-03-15 发布日期:2025-03-27
  • 作者简介:马在强(1993-),男,助理研究员,博士,主要研究方向:化学计量技术。
  • 基金资助:
    山东省自然科学青年基金项目(ZR2024QB182)资助。

The Application of Deep Learning in Chemometric Analysis

MA Zaiqiang1,HOU Xuejun1,ZHANG Jianghao1,ZHANG Xin1,ZHAI Congcong1,ZHAO Yan2,ZHAO Xiaogang1,*,LIU Xia1   

  1. 1.China North Industries Group Corporation Limited,53rd Research Institute,Jinan 250031,China;
    2.Zibo Institute of Measurement Technology,Zibo 255000,China
  • Online:2025-03-15 Published:2025-03-27

摘要: 深度学习在化学计量检测中的应用日益受到广泛关注,尤其是在与光谱技术相关的领域。光谱分析技术,作为化学计量学的重要组成部分,长期以来在分子分析、结构鉴定、定量测量等方面扮演着关键角色。随着深度学习算法和计算能力的不断发展,传统的光谱数据分析方法面临的挑战逐渐得到有效应对。该研究综述了深度学习在四大主要光谱技术—红外光谱、紫外光谱、核磁共振和质谱中的应用现状、技术优势以及未来发展趋势,分析了深度学习如何通过大数据训练、自动化特征提取、非线性建模等方法,提升光谱分析的精度和效率。随着计算能力的提升、深度学习模型的进一步优化以及大数据的不断积累,深度学习在化学计量检测中的应用,尤其是在光谱分析领域,正朝着更加智能化、自动化的方向发展,为化学分析技术带来革命性的变革,为科学研究和工业应用提供了强有力的支持。

关键词: 深度学习, 化学计量学, 红外光谱, 紫外光谱, 核磁共振, 质谱

Abstract: The application of deep learning in chemical metrology has been receiving increasing attention,particularly in the field of spectroscopy.Spectral analysis technology,as an important component of chemometrics,has long played a key role in molecular analysis,structural identification,and quantitative measurement.With the continuous development of deep learning algorithms and computational capabilities,the challenges faced by traditional spectral data analysis methods are gradually being effectively addressed.This research reviews the current applications,technological advantages,and future trends of deep learning in the four major spectroscopic techniques—Infrared spectroscopy (IR),Ultraviolet spectrum (UV),Nuclear Magnetic Resonance (NMR),and Mass Spectrometry (MS).It analyzes how deep learning,through big data training,automated feature extraction,and nonlinear modeling,enhances the accuracy and efficiency of spectral analysis.With the improvement of computational power,further optimization of deep learning models,and the continuous accumulation of big data,the application of deep learning in chemical metrology,particularly in the field of spectral analysis,is advancing towards a more intelligent and automated direction.This is bringing about revolutionary changes in chemical analysis technology and providing strong support for scientific research and industrial applications.

Key words: Deep Learning(DL), Stoichiometry, Infrared spectroscopy(IR), Ultraviolet spectrum(UV), Nuclear Magnetic Resonance(NMR), Mass Spectrometry(MS)

中图分类号: