宇航计测技术 ›› 2023, Vol. 43 ›› Issue (3): 97-102.doi: 10.12060/j.issn.1000-7202.2023.03.18

• 精密测试技术 • 上一篇    

基于深度学习的电力数据分析研究

柳薇,张波,梁明源   

  1. 国家电网有限公司客户服务中心,天津 300300
  • 出版日期:2023-06-25 发布日期:2023-07-08
  • 作者简介:柳薇(1963-),女,工程师,本科,主要研究方向:数据运营管理。

Research on Power Data Analysis based on Deep Learning

LIU Wei,ZHANG Bo,LIANG Ming-yuan   

  1. State Grid Customer Service Center,Tianjin 300300,China
  • Online:2023-06-25 Published:2023-07-08

摘要: 针对传统电力数据分析方法存在适用范围有限、模型复杂等导致电器分类准确率较差的问题,提出了一种基于多层堆叠长短期记忆(Long short-term memory,LSTM)网络的电力数据分析模型。首先,根据电力数据的频谱图、Mel频率倒谱系数(Mel-Frequency Cepstral Coefficient,MFCC)和Mel频谱图提取电力数据的特征,然后将其应用于深度学习模型并提高分类任务的性能,从而改善过拟合问题。其次,建立了一个多层堆叠LSTM模型,从而有效提高模型的分类和回归能力。最后,提出了一种改进的软独热编码和多尺度训练方法,从而防止峰值概率分布,提高模型的泛化能力。实验阶段,以家庭电力数据集为例,对所提模型进行验证。仿真结果表明,所提模型软独热编码及多尺度训练对加快训练效果具有一定效果,最终分类准确率到达89.85 %。

关键词: 电力系统, 数据分析, 深度学习, 编码, 特征提取

Abstract: Aiming at the problems of poor classification accuracy of electrical appliances caused by the limited scope of application and complex model of traditional power data analysis methods,a power data analysis model based on multi-layer stacked Long Short-Term Memory (LSTM) network is proposed.Firstly,the features of power data are extracted from the spectrum diagram,Mel Frequency Cepstrum Coefficient (MFCC) and Mel spectrum diagram of power data,and then applied to the deep learning model to improve the performance of classification tasks,so as to improve the over fitting problem.Secondly,a multi-layer stacked LSTM model is established to effectively improve the classification and regression ability of the model.Finally,an improved soft coding and multi-scale training method is proposed to prevent the peak probability distribution and improve the generalization ability of the model.In the experimental stage,the proposed model is verified by taking the household power data set as an example.The simulation results show that the soft coding and multi-scale training of the proposed model have a certain effect on accelerating the training effect,and the final classification accuracy reaches 89.85 %.

Key words: Power system, Data analysis, Deep learning, Code, Feature extraction

中图分类号: