宇航计测技术 ›› 2025, Vol. 45 ›› Issue (2): 63-71.doi: 10.12060/j.issn.1000-7202.2025.02.04

• • 上一篇    下一篇

大语言模型辅助的知识图谱渐进式错误修复方法

郑旭1,2,刘静1,2,张栗粽1,2,*,闫科1,2,宋发仁3,常清雪4   

  1. 1.电子科技大学,成都 611731;

    2.喀什地区电子信息产业技术研究院,喀什 844099;

    3.电子科技大学(深圳)高等研究院,深圳 518000;

    4.四川华鲲振宇智能科技有限责任公司,成都 610000

  • 出版日期:2025-04-15 发布日期:2025-04-29
  • 作者简介:郑旭(1987-),男,副教授,博士,主要研究方向:人工智能,知识图谱。

A Progressive Error Repair Method for Knowledge Graphs Assisted by Large Language Models

ZHENG Xu1,2,LIU Jing2,ZHANG Lizong1,2,*,YAN Ke1,2,SONG Faren3,CHANG Qingxue4   

  1. 1.University of Electronic Science and Technology of China,Chengdu 611731,China;

    2.Kash Institute of Electronics and Information Industry,Kashi 844099,China;

    3.University of Electronic Science and Technology of China,Shenzhen Institute for Advanced Study,Shenzhen 518000,China;

    4.Sichuan Huakun Zhenyu Intelligent Technology Co.,Ltd,Chengdu 610000,China
  • Online:2025-04-15 Published:2025-04-29

摘要: 知识图谱是有效整合和组织信息的重要知识表示形式,广泛应用于搜索引擎、智能问答和推荐系统。传统知识图谱构建依赖于人工标注和规则系统,规模巨大,质量参差,难以适应海量数据的动态变化。近年来,大模型在知识生成方面表现突出,但提升知识图谱错误检测以及修正的研究仍然缺乏。为此,提出了一种大语言模型辅助的知识图谱渐进式错误修复方法。该方法利用嵌入模型评估知识三元组质量,以高质量三元组作为提示学习内容,实现了基于大语言模型的知识修复。基于大量试验分析,所提出的方法能够显著提升知识图谱的推理能力。

关键词: 知识图谱, 大语言模型, 嵌入模型, 渐进式方法, 错误修复

Abstract: Knowledge graph is an important form of knowledge representation,which can integrate and organize information effectively.It has been widely used in search engines,intelligent question answering and recommendation systems.Traditional knowledge graph construction relies on manual annotation and rule-based systems,which is huge in scale and uneven in quality,and is difficult to adapt to the dynamic changes of massive data.Recently,large models have shown superior performance in knowledge generation.However,there is still a lack of research on large language models to enhance knowledge graph error repairing.Therefore,a progressive error correction method for knowledge graphs,assisted by large language models,has been proposed.Using embedding models to evaluate the quality of knowledge triples and high-quality triples as prompts for learning content,knowledge correction by large language models is realized.Based on extensive experiments,the proposed method significantly enhances the reasoning ability of knowledge graphs.

Key words: Knowledge graph, Large language model, Embedding model, Progressive method, Error repair

中图分类号: