宇航计测技术 ›› 2024, Vol. 44 ›› Issue (6): 20-27.doi: 10.12060/j.issn.1000-7202.2024.06.03

• 人工智能计量测试专栏 • 上一篇    下一篇

基于主成分分析的模型鲁棒性测评方法研究

余涛1,王思野1,*,赵中原2   

  1. 1.北京邮电大学人工智能学院,北京 100876;2.北京邮电大学信息与通信工程学院,北京 100876
  • 出版日期:2024-12-15 发布日期:2025-01-21
  • 作者简介:余涛(2000-),男,在读硕士研究生,主要研究方向:高性能计算与人工智能。
  • 基金资助:
    北京市自然基金资助项目(L223026)

Robustness Evaluation Methods of Models Based on Principal Component Analysis

YU Tao1,WANG Siye1,*,ZHAO Zhongyuan2#br#   

  1. 1.School of Artificial Intelligence,Beijing University of Posts and Telecommunications,Beijing 100876,China;
    2.School of Information and Communication Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China
  • Online:2024-12-15 Published:2025-01-21

摘要: 人工智能的迅猛发展已经深入到各行各业,深度神经网络(DNN)广泛应用于多个领域。然而,随着应用的普及,暴露出对抗攻击对智能模型脆弱性的严重威胁。对抗攻击可能导致模型失效,特别是在商业和军事安全等关键领域,造成潜在的严重后果。这类攻击通过精心设计的输入,干扰模型的正常运行,进而危及系统的安全性和可靠性。为全面、科学地评估不同模型算法的鲁棒性,首次提出了一种基于主成分分析(PCA)的量化评估框架,涵盖了误分类率、不可感知性、攻击效率等多个关键评估指标。通过对20余种模型算法进行测试,并利用PCA对高维数据降维,提取主要评估因素,简化数据结构,最终得出各算法的综合评分。试验结果表明,所提出的评估方法有效且可靠,为模型鲁棒性研究提供了科学指导。

关键词: 主成分分析, 模型鲁棒性, 对抗样本, 数据降维

Abstract: The rapid development of artificial intelligence has deeply penetrated various industries,with deep neural networks (DNN) being widely applied in multiple fields.However,the popularity of the application exposes the serious threat of adversarial attacks on the vulnerability of intelligent models.Adversarial attacks can lead to model failure,particularly in critical areas such as commercial and military security,potentially resulting in severe consequences.These attacks work by crafting carefully designed inputs to disrupt the normal functioning of models,thus compromising system security and reliability.To comprehensively and scientifically evaluate the robustness of different model algorithms,a quantitative evaluation framework is proposed based on Principal Component Analysis (PCA) for the first time,which encompasses several key evaluation metrics,including misclassification rate,imperceptibility,and attack efficiency.By testing over 20 model algorithms and using PCA to reduce the dimensionality of high-dimensional data,the main evaluation factors are extracted,simplifying the data structure and ultimately producing an overall score for each algorithm.Experimental results demonstrate that the proposed evaluation method is effective and reliable,providing scientific guidance for research on model robustness.

Key words: Principal component analysis, Model robustness, Adversarial examples, Dimensionality reduction

中图分类号: