宇航计测技术 ›› 2024, Vol. 44 ›› Issue (6): 42-55.doi: 10.12060/j.issn.1000-7202.2024.06.05

• 人工智能计量测试专栏 • 上一篇    下一篇

一种基于最小距离的对抗攻击迁移性评估框架

伍家平,党晨,罗志聪,康健,蒋晓悦,夏召强,冯晓毅   

  1. 西北工业大学,西安 710068
  • 出版日期:2024-12-15 发布日期:2025-01-21
  • 作者简介:伍家平(1997-),男,在读博士研究生,主要研究方向:深度学习、人工智能安全和对抗样本。
  • 基金资助:
    陕西省重点产业链项目(2022ZDLGY06-07)

A Minimal-Distance-Based Framework for Assessing Adversarial Attack Transferability

WU Jiaping,DANG Chen,LUO Zhicong,KANG Jian,JIANG Xiaoyue,XIA Zhaoqiang,FENG Xiaoyi   

  1. Northwestern Polytechnical University,Xi’an 710068,China
  • Online:2024-12-15 Published:2025-01-21

摘要: 对抗鲁棒性是智能模型安全性测评的重要组成部分。目前,对迁移攻击的研究主要局限于固定预算攻击,缺少对最小距离攻击的研究。此外,对于迁移攻击的评估或攻击迁移性的测量,并没有一个统一、全面的评估框架,这也给智能模型安全性测评带来很大挑战。针对以上问题,提出了一种基于最小距离的对抗攻击迁移性评估框架,框架首先通过搜索的方法找到攻击能够成功转移的最小预算;然后,使用一个结合扰动大小和攻击成功率的总体分数以及一个最优性度量,比较了不同攻击的迁移性。总体分数既可以反映不同攻击的迁移性强弱,也可以通过对比不同目标模型的分数,确定针对迁移攻击的鲁棒性的高低,最优性度量量化了一种攻击与最优解的接近程度。试验结果表明,我们的方法可以击败现有的最佳方法,并得出了一些经验性的结论。

关键词: 智能模型安全性, 对抗样本, 迁移性, 鲁棒性

Abstract: Adversarial robustness is a crucial component of evaluating the security of intelligent models.Currently,research on transfer attacks is primarily limited to fixed-budget attacks,with a lack of studies focusing on minimal-norm attacks.Furthermore,there is no unified and comprehensive evaluation framework for assessing transfer attacks or measuring attack transferability,which poses significant challenges to the security assessment of intelligent models.To address these issues,a minimal-distance-based framework for assessing adversarial attack transferability is proposed.By the framework,a search method is used to identify the minimum budget for successful transfer of attacks firstly.Then,the transferability of different attacks are compared using an overall score that combines perturbation size and attack success rate,as well as an optimality measure.The overall score reflects the varying degrees of transferability among different attacks and allows for comparison of target models' robustness against transfer attacks.The optimality measure quantifies the proximity of an attack to an optimal solution.Texting results demonstrate that our method outperforms existing state-of-the-art approaches and yields several empirical conclusions.

Key words: Intelligent model security, Adversarial examples, Transferability, Robustness

中图分类号: